LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2007
MT 3500-ALGEBRA, CALCULUS \& VECTOR ANALYSIS

Answer all the questions:

1.Form a partial differential equation by eliminating the arbitrary constants from the equation

$$
z=\left(x^{2}+a\right)\left(y^{2}+b\right) .
$$

2. Show that $\nabla \cdot r=3$.
3. Evaluate $\int_{0}^{1} \int_{0}^{2}\left(x^{2}+y^{2}\right) d y \underset{\rightarrow}{d x}$
4. Find the value of a if $(a x y-z) i+(a-2) x^{2} j+(1-a) x z^{2} k$ is irrotational.
5. If $\vec{f}=x^{2} \vec{i}+x y j$ find $\int_{C} f$. $d r$ from $(0,0)$ to $(1,1)$ along $y=x$.
6. Show that $\partial(\mathrm{u}, \mathrm{v}) / \partial(\mathrm{u}, \mathrm{v})=1$.
7. Show that $\beta(m, n)=\beta(n, m)$.
8. State Wilson's theorem for real numbers.
9. Among grad $\varphi, \operatorname{div} \varphi$ and curl φ which is a scalar function?

10 Find the value of $L\left[e^{-a t}\right]$.
Answer any five questions:
11. Find the directional derivative of the function $Q=x y+y z+z x$ at the point $(1,2,0)$ in the direction of $\vec{i}+2 \vec{j}+2 k$.

12 .State and prove and Cauchy's inequality for R^{n}.
13. Derive the relation between Beta and Gamma functions.
14. Solve using Charpit's method $z^{2}\left(p^{2} z^{2}+q^{2}\right)=1$, where $p=\partial z / \partial x$ and $q=\partial z / \partial y$.
15. Verify Stoke's theorem for the function $\vec{F}=x^{2} \overrightarrow{i+x y} j$, integrated along the region $z=0$, $x=0$ to a and $y=0$ to a.
16. Using Lagrange's method, solve $x(y-z) p+y(z-x) q=z(x-y)$,
where $p=\partial z / \partial x$ and $\mathrm{q}=\partial \mathrm{z} / \partial \mathrm{y}$.
17. Show that \quad (i) $\vec{\nabla} \times \nabla \varphi=0$
(ii) $\nabla \mathrm{x} \overrightarrow{(\mathrm{A}} \overrightarrow{\mathrm{x}} \mathrm{B})=\overrightarrow{\mathrm{A}}(\nabla \cdot \overrightarrow{\mathrm{B}})-\overrightarrow{\mathrm{B}}(\nabla \cdot \overrightarrow{\mathrm{A}})+(\overrightarrow{\mathrm{B}} \cdot \nabla \overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{A}} \cdot \nabla) \overrightarrow{\mathrm{B}}$
18. State and prove Fermat's theorem.

Answer any two questions:
19. Find the value of (i) L [sinhat]
(ii) $\mathrm{L}\left[\cos ^{2} 6 t\right]$
(iii) $\mathrm{L}^{-1}\left[\mathrm{~s} /\left(\mathrm{s}^{2}+\mathrm{a}^{2}\right)^{2}\right]$
(iv) $\mathrm{L}^{-1}\left[(\mathrm{~s}+2) /\left(\mathrm{s}^{2}+4 \mathrm{~s}+5\right)^{2}\right]$.
20.(i)Evaluate $\iint_{R}(x-y)^{4} e^{x+y} d x d y$ where R is the square with vertices $(1,0),(2,1),(1,2)$, and (0,1), where $x+y=1, x+y=3, x-y=1$ and $x-y=-1$, by changing the variables .
(ii) Evaluate $\iint_{R} x y(1-x-y)^{1 / 2} d x d y$ where R is the triangle with sides $x+y=1, x=0, y=0$, if $x+$ $y=u, y=u v$.
21. Solve the partial differential equations
(i) $p^{2}+q^{2}=1$
(ii) $z=p x+q y+p^{2} q^{2}$
(iii) $p-x^{2}=q+y^{2}$
22. (i)Verify Green's theorem in the xy plane for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is a curve given by $x=0, y=0$ and $x+y=1$.
(ii) Find the highest power of 5 in 1800 !

